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Today’s learning targets

Reminder of non-relativistic Quantum Mechanics — wavefunction, Schrodinger equation

Probability density and flux (continuity equation)

The Klein-Gordon equation for relativistic particles

The Dirac equation and antiparticles



Quantum mechanics: reminder

« Wavefunction:

* Non-relativistic quantum mechanics (QM) postulates that free particles are described by wave packets which

can be decomposed into a Fourier integral of plane waves =
x(t) = ¥Y(x,t) or¥(p,E)

* QM takes into account wave-particle duality implying that one can never predict the exact particle position and

momentum at the same time

* Dynamical variables (e.g. E, p) of a QM state are obtained from the time-dependent wavefunction by acting on

it with time-independent operators

* Interpretation of the wave function:

* the concept of a precise trajectory is replaced by a probability density to find the particle at a given position at a

given time:

p(,t) = [¥YE, O)]? =¥ (& HPE D)



Quantum mechanics: reminder

 Observables:

- any measurable physics quantity A can be associated to a linear operator 4 such that if one knows ¥(x) the

expectation value of that quantity can be obtained using
1) = | WG 04V 0
* for position, momentum (in 1D) and energy the corresponding operators and expectation values are

x=X=x= &)= jLIJ*(x, t)xW(x, t)dx

A~

3 3
py = B = —ih-— = (B) jtp (x.£) (—ma—)wx dx

E—F = in" =>(E)=ftp*(x,t)(ih

0
— ¥
m ) (x,t)dx

dt



Quantum mechanics: reminder

* Heisenberg’s uncertainty principle:

* for two physics quantities to be simultaneously measurable their operators should commute
[A,B] = AB — BA =0

* examples:

>0
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=
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Cross section: example

 The last equation leads to the Heisenberg uncertainty principle:

* Arises due to particle-wave nature of all quantum objects

* (a) a pure wave of fixed frequency has no spatial localisation but p (a) | | ’

is well-defined asp «c k o 1/A x v

* (b) a wave packet with spatial dispersion Ax and frequency (b)

dispersion Ak — the spatial dispersion is inversely proportional to

the frequency dispersion g0, = h/2

* (c) a particle is fully localised but has no determined frequency  (C)




Schrodinger equation (1926)

* The equation governing the dynamics of a quantum system was established by Schrédinger for non-

relativistic particles. He assumed the solution to be of the same form as an electromagnetic wave:

Y = Nellkx—wt) op Nei®X-EO/h (ysing E = hw,p = hk)

« Start with non-relativistic relation between energy and momentum

p* p*
E=—+4V |X¥ = E¥=—W+Vy

2m - 2m
e Take the derivative of the wavefunction W¥:

0%y p? Y

=Py =-_"y 29 = _p2-

Jdx? k h2 - P h Jdx?
OLIJ_ wW = 'ELIJ = ELIJ—'ﬁaLIJ
ot VE Ty ~ ot

* Giving the



Schrodinger equation (1926)

* Continuity equation in the context of QM:

* in electromagnetism charge conservation in a volume VV where no particles are created or destroyed is given by:

= 5,5 ap (9_5); t) p(x,t) — charge density
/Vv. jx, t) + T =0 J(%,t) — current (flux) of p
N of particles leaving decrease in N of particles
volume V in a volume V

What is the connection between the continuity equation in electrodynamics and the QM description

Need to find what p and j are in the QM formalism

Start with Schrédinger equation for a non-relativistic free particle (V = 0)

_haw+h2 62‘P_0 (1)
l ot  2m 0x2

Multiply Eq.1 by W*, multiply the complex conjugate of Eq.1 by ¥ and subtract the two




Schrodinger equation (1926)

 Result:

* Resembles a lot the continuity equation:

dp(x,t
p(x )=0

V.7(%, t
jix,t) + ™

« From here we can extract the probability density p and the probability current (flux) j

p(X,t) = Y&, O)° =¥ (& HPE D)

JE ) = — % (P* (%, VYR 1) — P (&, O VP* (X 1))



Plane wave example
p(X,t) = Y&, O)]° =¥ (& OHPE D)

7%, t) = — % (P* (%, VYR 1) — P (X, ) VP* (X, 1))

Switching to natural units (c = A = 1)

Y = Nel@P*EO/M = p = |N|2 and] = |N|2% = |N|?¥

The number of particles per unit volume is |N|?

For |N|? particles per unit volume moving at velocity ¥, we have |N|%¥ passing through a unit area per

unit time (particle flux)

* We can conclude that j as a vector in the particle's direction with magnitude equal to the flux



Klein-Gordon equation (1926)

 Following the same spirit, Oscar Klein and Walter Gordon attempted to find a QM equation describing

a relativistic electron by using the relativistic relation between energy and momentum for a free particle
E? = p? + m*
* Replace E and p with the corresponding operators
(B)*w = (P)*¥ + m?w

P _ha 5 _in
Lo =T oy =t B =i

2

i,
(i &) Y = (=iV)?¥Y + m?¥



Klein-Gordon equation (1926)

e Using 9, = > = (2,29 9)and ,0% = 92 — 92 — 92 — 02, one can write the KG equation as:
&% = 51 ~ \ot’ 9x’ 0y’ a2 z t %~ 0 9

(0,0* + m?)¥ =0

* Problems with the KG equation:

« for a plane wave solution ¥ = Ne!@*-Ft) the KG equation gives

—E2W = —[B|?¥ — m?¥ = E = +/|p|? + m?

* historically, the negative solutions were viewed as problematic
« itimplied no ground state in the atoms

* transition to lower energy states is always possible



Klein-Gordon equation (1926)

* Problems with the KG equation:
« compute the probability density and probability current (flux)
p=—i(¥o¥—-¥o¥") jix,t) = —i(P*V¥Y — YV¥*)
i(p-X—Et)

* for a plane wave: ¥ = Ne

p = 2E|N|? and] = 2|N|*p

« = particle densities are proportional to E, which can also be negative



The Dirac equation (1928)

* There were two main problems with the KG equation:
* negative energy solutions

* negative particle densities associated with these solutions

* Nowadays in Quantum Field Theory (QFT) these problems are overcome

* the KG equation is used to describe spin-0 particles (e.g. pions)

ﬁ\  These problems led to new developments
o P » motivated Dirac to search for a different formulation of relativistic
-

QM in which all particle densities are positive

* the resulting wave equation had solutions which not only solved this
problem but also fully described the intrinsic spin and magnetic

moment of the electron!

14



The Dirac equation (1928)

* Schrodinger equation: oW . 1 92y -
‘ot | 2mox?

* first order in d,, second order in d,, d,, d,

* Klein-Gordon equation:

2 —
(0,0 + m?)¥ =0
* second order in 0y, 0y, 0y, 0,

* Dirac looked for an alternative, which has first order in d;, dy, 0y, 0,:

ﬁw=(&-ﬁ+ﬁm)tp=ia— (3)

Hamiltonian operator —iV



The Dirac equation (1928)

Squaring Eq.3 we should get: 0%y K A LA AN
q g &g g _or _ . + m2y (4)
ot? dx? 0y* 0z?

For this to be a reasonable formulation of QM, Dirac’s equation must be compatible with KG:

a;=ay=a; =p*=1

a;f + Ba; =0 (5)

al-aj +C(jC(i =0 (] +* l)

Obviously a; and f can not be numbers: require 4 mutually anti-commuting matrices

Must be at least 4X4 matrices



The Dirac equation (1928)

« Consequently, the wavefunction must be a four-component Dirac spinor

* The wavefunction has new degrees of freedom as a result of introducing an equation that is first

order in time/space derivatives W
1

Y = "pz

* For the Hamiltonian H¥Y = (@ - p + fm)¥ = iaa—lf to be Hermitian:

_ T _ T T _
Ay =y, 0y =y, 0, =ay,B =7

» [t is convenient to introduce an explicit representation for «a, 8

* It should be noted that physical results do not depend on the particular representation: everything

is in the commutation relations



Pauli spin matrices

* A convenient choice is to use Pauli (spin) matrices oy, gy, 0;:

0 .
ﬁz((l) —01) ajz(cj %]

=G0 w0 w0

* The matrices are Hermitian and anti-commute with each other

)



The Dirac equation: Probability density and current

Let’s get back to the probability density and current that were problematic in the KG equation

Dirac equation:

( 0 Jd 6+ )Lp (,ayp
(A, =—— P —iay, = 3y —ia, Py fm lat (6)

It's Hermitian conjugate

+aw* ty oYt s oyt f 4 mutpt = oYt 7
laxa laya laZCZ mW¥Tp lat (

Compute WTXEq.6 — Eq.7XY¥ taking into account that @ and § are Hermitian and the relation

0¥ ot Lp_a(qfraxw)
- d0x




The Dirac equation: Probability density and current

We get the continuity equation:

V- (PTaw) + a(lgij) =0 (8)
e Where W1 = (¥}, ¥;, W5, ¥s)
 The probability density and current are
p =Yy, j =¥YTaqw (9)

« where p = WTW = |V |2 + |W ]2+ W52+ |W5]? > 0

Unlike the KG equation, the Dirac equation has probability density which are

The solutions of the Dirac equation are the four-component Dirac spinors

The great success of the Dirac equation is that these components naturally describe the property of

intrinsic spin of particles



Covariant notation: the Dirac y matrices

* The Dirac equation can be written more elegantly by introducing the four Dirac gamma matrices

 The probability density and current are
o 0 0 2 ., 0
(lﬂaxa+l,8ay@+l,8az——,8 ) =—(lﬁa)‘lj

0 d 9] . oY
(ly ax-l-l]/ a—y+1y E—m)q’ —1y s

. Using0ﬂ=ai—(

d 0 0 0

3¢ Ix’ ay Py ) we can rewrite it as

(iy#9, —m)¥ =0 (10)

* The Dirac gamma matrices are not four-vectors:



The Dirac equation: solutions

* Consider a particle at rest, p = 0:

0 I O
0 — 0 _
(l]/ ” m) $2 = 0, where y° = (O _1)
3
Yy
e . ) L w= (¥
Spinor W splits into two 2-component bi-spinors: ¥ = (q;;‘)
(o %) 5elan) =m () t
(0¥, p .0¥p p
e = , — = —-m
Tor T M e B
* The solutions are written as a function of the bi-spinors u, and ug:
Y, (t) = uye™ ™, E > 0:positive energy solutions

Wy (t) = uge'™t, E < 0:negative energy solutions



The Dirac equation: solutions

* Going back to Eq. 10
(ml 0 ) (UA) —m (uA)
0 —ml/\ug Ug

 Left-hand side is diagonal = we can find decoupled solutions for u4 and ug, and choose a set of

eigenvector



The Dirac equation: solutions

 Putting everything together, for a particle at rest we find:

eimt @@ = N e '™t with positive energy

0
1
0
0

g =nN[o)erimt @™ = N [0])e*m with negative energy
1 0
0 1

 Four solutions: two with positive energy and two with negative energy



The Dirac equation: solutions

 The fact that there are two identical fermions with the same energy implies that there is another

quantum number that should allow to distinguish them, the helicity

* The corresponding operator is the operator projecting the spin on the direction of motion

h = +1, positive helicity
h = —1, negative helicity

S .
- —— P
)
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Dirac’s explanation of the negative energy solutions

Atoms are observed to be stable

When an electron occupies a high energy level, it undergoes transition down

to the state of lowest energy not yet occupied by two electrons

To save his equation, Dirac makes a hypothesis

+ all states of negative energy are occupied by two electrons, preventing another electron to

reach these states

All the electron filling the negative energy states form what was called the

Dirac see

w b

=

rmrrmirm rm rm
No

(&)
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Dirac’s explanation of the negative energy solutions

w B

* What happens if sufficient energy is provided to an electron of the sea?

* It will appear like a hole in the sea

* missing q = —e = presence of g = +e

I'I'ImNI'I'I m rm

* missing E < 0 = presence of £ > 0

* A hole in the electron sea at energy level E < 0 looks like an ordinary particle

with charge ¢ = +e and energy —E > 0!

* Would such positive electrons exist?

* If yes, then they will be identical to the electron except for their charge -E 3 —®




Discovery of the anti-electron (1932)

« The mystery of negative energy solutions of Dirac’s equation persisted until 1932, when C.

Anderson discovered a new particle seemingly identical to the electron but with opposite charge

28




Discovery of the anti-electron (1932)

He used a cloud chamber — a tube filled with supersaturated

vapour

* Charged particles passing through the vapour ionise it, which ‘~. ® §
then seed an ion trail that can be photographed : . %

« Uniform magnetic field was applied

* He observed the tracks of a positively charged particle for ' | i Plate
which the energy losses in the Pb —plate were not compatible et 63 MeV

with those of a proton

* On the contrary, the track looked exactly like an electron

This was the observation of the first antiparticle, the anti-electron, called positron

29



Discovery of the anti-electron

* 1933 — Dirac, together with Schrodinger, receive the Nobel prize

* 1936 — Anderson, at the age of 31, becomes the second youngest Nobel prize winner

30



The antiparticles

Feynman-Stiicklenberg interpretation for E < 0 (1940):

* the story of the sea of electrons was not very satisfactory (infinite negative charge in the Universe)

* new hypothesis supported by the positron observation

 each particle of mass m and charge q has a corresponding antiparticle of mass m and charge —q

Indeed, the E < 0 solution can be written as E(—t) instead of —Et
Corresponds to a particle of positive energy E with time inversed

Nowadays, we know that for each particle that we know there exists

an anti-particle

The discovery of the positron was an important milestone that

contributed significantly to our understanding of particle physics

Vx
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Summary of Lecture 6

Main learning outcomes

Reminder of non-relativistic Quantum Mechanics — wavefunction interpretation, Schrodinger equation

The Klein-Gordon equation for relativistic particles: derivation, solution and resulting problems

The Dirac equation and antiparticles: derivation and solution

How to compute probability density and flux using the continuity equation for Schrodinger, Klein-

Gordon and Dirac equations

Antiparticle interpretation and the discovery of the positron



