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Today’s learning targets

• Reminder of non-relativistic Quantum Mechanics – wavefunction, Schrödinger equation

• Probability density and flux (continuity equation)

• The Klein-Gordon equation for relativistic particles

• The Dirac equation and antiparticles
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Quantum mechanics: reminder

• Wavefunction:

• Non-relativistic quantum mechanics (QM) postulates that free particles are described by wave packets which 

can be decomposed into a Fourier integral of plane waves ⟹ wavefunction

• QM takes into account wave-particle duality implying that one can never predict the exact particle position and 

momentum at the same time

• Dynamical variables (e.g. 𝐸, 𝑝) of a QM state are obtained from the time-dependent wavefunction by acting on 

it with time-independent operators 

• Interpretation of the wave function:

• the concept of a precise trajectory is replaced by a probability density to find the particle at a given position at a 

given time:
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𝑥⃗ 𝑡 ⟹ Ψ 𝑥⃗, 𝑡 	or	Ψ 𝑝⃗, 𝐸

𝜌 𝑥⃗, 𝑡 = Ψ 𝑥⃗, 𝑡 ! = Ψ∗ 𝑥⃗, 𝑡 Ψ x, t



Quantum mechanics: reminder

• Observables:

• any measurable physics quantity 𝐴 can be associated to a linear operator '𝐴 such that if one knows Ψ(𝑥) the 

expectation value of that quantity can be obtained using 

• for position, momentum (in 1D) and energy the corresponding operators and expectation values are
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0𝐴 = 2Ψ∗ 𝑥⃗, 𝑡 0𝐴Ψ 𝑥⃗, 𝑡 𝑑#𝑥⃗

𝑥 ⟹ 4𝑋 = 𝑥 ⟹ 6𝑥 = 2Ψ∗ 𝑥, 𝑡 𝑥Ψ 𝑥, 𝑡 𝑑𝑥

𝑝$ ⟹ 7𝑃$ = −𝑖ℏ
𝜕
𝜕𝑥	 ⟹

7𝑃$ = 2Ψ∗ 𝑥, 𝑡 −𝑖ℏ
𝜕
𝜕𝑥	 Ψ 𝑥, 𝑡 𝑑𝑥

𝐸 ⟹ 4𝐸 	= 𝑖ℏ
𝜕
𝜕𝑡	

⟹ 4𝐸 = 2Ψ∗ 𝑥, 𝑡 𝑖ℏ
𝜕
𝜕𝑡	

Ψ 𝑥, 𝑡 𝑑𝑥



Quantum mechanics: reminder

• Heisenberg’s uncertainty principle:

• for two physics quantities to be simultaneously measurable their operators should commute

• examples: 
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!𝐴, $𝐵 = !𝐴 $𝐵 	− $𝐵 !𝐴 = 0

$𝑋, $𝑌 = $𝑌, !𝑍 = !𝑍, $𝑋 = 0

-𝑃! , -𝑃" = -𝑃", -𝑃# = -𝑃#, -𝑃! = 0

$𝑋, -𝑃" = $𝑋, -𝑃# = 0

-𝑿, 0𝑷𝒙 = -𝒀, 0𝑷𝒚 = -𝒁, 0𝑷𝒛 = 𝒊ℏ



Cross section: example

• The last equation leads to the Heisenberg uncertainty principle:

• Arises due to particle-wave nature of all quantum objects

• (a) a pure wave of fixed frequency has no spatial localisation but 𝑝 

is well-defined as 𝑝 ∝ 𝑘 ∝ 1/𝜆 ∝ 𝜈

• (b) a wave packet with spatial dispersion Δ𝑥 and frequency 

dispersion Δk − the spatial dispersion is inversely proportional to 

the frequency dispersion 𝜎$𝜎%! ≥ ℏ/2

• (c) a particle is fully localised but has no determined frequency 
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𝝈𝒙𝝈𝒑𝒙 ≥
ℏ
𝟐



Schrödinger equation (1926)
• The equation governing the dynamics of a quantum system was established by Schrödinger for non-

relativistic particles. He assumed the solution to be of the same form as an electromagnetic wave:

• Start with non-relativistic relation between energy and momentum

• Take the derivative of the wavefunction Ψ:

• Giving the Schrödinger equation for a non-relativistic particle with no spin:
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Ψ = 𝑁𝑒& '$()* 	or	𝑁𝑒& %$(+* /ℏ	 (using	𝐸 = ℏ𝜔, 𝑝 = ℏ𝑘)

𝐸 =
𝑝!

2𝑚
+ 𝑉	 |×Ψ	 ⟹ 	 𝐸Ψ =

𝑝!

2𝑚
Ψ+ 𝑉Ψ

𝜕!Ψ
𝜕𝑥! = −𝑘!Ψ = −

𝑝!

ℏ!Ψ	 ⟹	 𝑝!Ψ = −ℏ!
𝜕!Ψ
𝜕𝑥!

𝜕Ψ
𝜕𝑡

= −𝑖𝑤Ψ = −𝑖
𝐸
ℏ
Ψ	 ⟹ 	 𝐸Ψ = 𝑖ℏ

𝜕Ψ
𝜕𝑡

𝒊ℏ
𝝏𝚿
𝝏𝒕

= −
ℏ𝟐

𝟐𝒎
𝝏𝟐𝜳
𝝏𝒙𝟐

+ 𝑽𝚿



Schrödinger equation (1926)
• Continuity equation in the context of QM:

• in electromagnetism charge conservation in a volume 𝑉 where no particles are created or destroyed is given by:

• What is the connection between the continuity equation in electrodynamics and the QM description

• Need to find what 𝜌 and 𝑗 are in the QM formalism

• Start with Schrödinger equation for a non-relativistic free particle (𝑉 = 0)

• Multiply Eq.1 by Ψ∗, multiply the complex conjugate of Eq.1 by Ψ and subtract the two
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∇. 𝚥 𝑥⃗, 𝑡 +
𝜕𝜌 𝑥⃗, 𝑡
𝜕𝑡

= 0

decrease in N of particles 
in a volume 𝑉 

N of particles leaving 
volume 𝑉 

𝜌 𝑥⃗, 𝑡 − charge density
	 𝚥 𝑥⃗, 𝑡 − current (flux) of 𝜌

𝑖ℏ
𝜕Ψ
𝜕𝑡 +

ℏ1

2𝑚
𝜕1𝛹
𝜕𝑥1 = 0 (1)



Schrödinger equation (1926)

• Result:

• Resembles a lot the continuity equation:

• From here we can extract the probability density 𝜌 and the probability current (flux) 𝑗
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∇. 𝚥 𝑥⃗, 𝑡 +
𝜕𝜌 𝑥⃗, 𝑡
𝜕𝑡 = 0

𝜕 Ψ∗Ψ
𝜕𝑡 + ∇ ⋅

𝑖ℏ
2𝑚 Ψ∗∇Ψ −Ψ∇Ψ∗ = 0

𝜌 𝑥⃗, 𝑡 = Ψ 𝑥⃗, 𝑡 ! = Ψ∗ 𝑥⃗, 𝑡 Ψ x, t

𝚥 𝑥⃗, 𝑡 = −
𝑖ℏ
2𝑚 Ψ∗ 𝑥⃗, 𝑡 ∇Ψ x, t − Ψ 𝑥⃗, 𝑡 ∇Ψ∗ x, t



Plane wave example

• Switching to natural units (𝑐 = ℏ = 1)

• The number of particles per unit volume is 𝑁 !

• For 𝑁 ! particles per unit volume moving at velocity 𝑣⃗, we have 𝑁 !𝑣⃗ passing through a unit area per 

unit time (particle flux)

• We can conclude that 𝑗 as a vector in the particle`s direction with magnitude equal to the flux
10

Ψ = 	𝑁𝑒3 4⃗⋅!⃗678 /ℏ ⟹ 𝜌 = 𝑁 1	and	⃗ȷ = N 1 p
m
= N 1v

𝜌 𝑥⃗, 𝑡 = Ψ 𝑥⃗, 𝑡 ! = Ψ∗ 𝑥⃗, 𝑡 Ψ x, t

𝚥 𝑥⃗, 𝑡 = −
𝑖ℏ
2𝑚 Ψ∗ 𝑥⃗, 𝑡 ∇Ψ x, t − Ψ 𝑥⃗, 𝑡 ∇Ψ∗ x, t



Klein-Gordon equation (1926)
• Following the same spirit, Oscar Klein and Walter Gordon attempted to find a QM equation describing 

a relativistic electron by using the relativistic relation between energy and momentum for a free particle

• Replace 𝐸 and 𝑝 with the corresponding operators

• Klein-Gordon equation for a relativistic particle with no spin
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𝝏𝟐𝚿
𝝏𝒕𝟐 = 𝛁𝟐𝚿−𝒎𝟐𝚿 (𝟐)

𝐸1 = 𝑝1 +𝑚1

4𝐸
!
Ψ = 4𝑃

!
Ψ+𝑚!Ψ

𝑖
𝜕
𝜕𝑡

!
Ψ = −𝑖∇ !Ψ+𝑚!Ψ

4𝐸 = 𝑖
𝜕
𝜕𝑡	

, 7𝑃$ = −𝑖ℏ
𝜕
𝜕𝑥	

, 7𝑃. = −𝑖ℏ
𝜕
𝜕𝑦	

, 7𝑃/ = −𝑖ℏ
𝜕
𝜕𝑧	



Klein-Gordon equation (1926)

• Using 𝜕0 =
1
1$"

= 1
1*
, 1
1$
, 1
1.
, 1
1/

 and 𝜕0𝜕0 = 𝜕*! − 𝜕$! − 𝜕.! − 𝜕/!, one can write the KG equation as:

• Problems with the KG equation:

• for a plane wave solution Ψ = 𝑁𝑒"(%⃗⋅'⃗()*), the KG equation gives

• historically, the negative solutions were viewed as problematic

• it implied no ground state in the atoms

• transition to lower energy states is always possible

12

𝜕<𝜕< +𝑚1 Ψ = 0

−E1Ψ = − p 1Ψ−𝑚1Ψ⟹ 𝐸 = ± p 1 +𝑚1



Klein-Gordon equation (1926)

• Problems with the KG equation:

• compute the probability density and probability current (flux)

• for a plane wave: Ψ = 𝑁𝑒"(%⃗⋅'⃗()*)

• ⟹ particle densities are proportional to 𝐸, which can also be negative

• How can a probability be negative? No interpretation can be made at that time.
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𝜌 = −𝑖 Ψ∗𝜕*Ψ−Ψ𝜕*Ψ∗ 𝚥 𝑥⃗, 𝑡 = −𝑖 Ψ∗∇Ψ − Ψ∇Ψ∗

𝜌 = 2𝐸 𝑁 1	and	⃗ȷ = 2 N 1p



The Dirac equation (1928)
• There were two main problems with the KG equation:

• negative energy solutions 

• negative particle densities associated with these solutions

• Nowadays in Quantum Field Theory (QFT) these problems are overcome

• the KG equation is used to describe spin-0 particles (e.g. pions)
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• These problems led to new developments

• motivated Dirac to search for a different formulation of relativistic 

QM in which all particle densities are positive

• the resulting wave equation had solutions which not only solved this 

problem but also fully described the intrinsic spin and magnetic 

moment of the electron!



The Dirac equation (1928)

• Schrödinger equation: 

• first order in 𝜕*, second order in 𝜕' , 𝜕, , 𝜕-

• Klein-Gordon equation:

• second order in 𝜕* , 𝜕' , 𝜕, , 𝜕-

• Dirac looked for an alternative, which has first order in 𝜕*, 𝜕$, 𝜕., 𝜕/:
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𝑖
𝜕Ψ
𝜕𝑡 +

1
2𝑚

𝜕1Ψ
𝜕𝑥1 = 0

𝜕<𝜕< +𝑚1 Ψ = 0

Hamiltonian operator −𝑖∇

-𝐻Ψ = 𝛼⃗ ⋅ 𝑝⃗ + 𝛽𝑚 Ψ = 𝑖
𝜕Ψ
𝜕𝑡

(3)



The Dirac equation (1928)

• Squaring Eq.3 we should get: 

• For this to be a reasonable formulation of QM, Dirac’s equation must be compatible with KG:

• Obviously 𝛼& and 𝛽 can not be numbers: require 4 mutually anti-commuting matrices

• Must be at least 4×4 matrices
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−
𝜕1Ψ
𝜕𝑡1

= −
𝜕1Ψ
𝜕𝑥1

−
𝜕1Ψ
𝜕𝑦1

−
𝜕1Ψ
𝜕𝑧1

+𝑚1Ψ

𝛼!1 = 𝛼"1 = 𝛼#1 = 𝛽1 = 1

𝛼=𝛽 + 𝛽𝛼= = 0

𝛼3𝛼= + 𝛼=𝛼3 = 0	(𝑗 ≠ 𝑖)

(4)

(5)



The Dirac equation (1928)

• Consequently,  the wavefunction must be a four-component Dirac spinor

• The wavefunction has new degrees of freedom as a result of introducing an equation that is first 

order in time/space derivatives

• For the Hamiltonian 7𝐻Ψ = 𝛼⃗ ⋅ 𝑝⃗ + 𝛽𝑚 Ψ = 𝑖 12
1*

 to be Hermitian:

• It is convenient to introduce an explicit representation for 𝛼, 𝛽

• It should be noted that physical results do not depend on the particular representation: everything 

is in the commutation relations
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Ψ =
Ψ>
Ψ1
Ψ?
Ψ@

𝛼! = 𝛼!
A	, 𝛼" = 𝛼"

A	, 𝛼# = 𝛼#
A	, 𝛽 = 𝛽A	



Pauli spin matrices

• A convenient choice is to use Pauli (spin) matrices 𝜎$, 𝜎., 𝜎/:

• The matrices are Hermitian and anti-commute with each other
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𝛽 = 𝐼 0
0 −𝐼

𝛼3 =
0 𝜎3
𝜎3 0

𝐼 = 1 0
0 1 𝜎4 =

0 1
1 0 𝜎5 =

0 −𝑖
𝑖 0 𝜎6 =

1 0
0 −1



The Dirac equation: Probability density and current

• Let’s get back to the probability density and current that were problematic in the KG equation

• Dirac equation:

• It’s Hermitian conjugate

• Compute Ψ3×Eq. 6	 − Eq. 7×Ψ taking into account that 𝛼 and 𝛽 are Hermitian and the relation 
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−𝑖𝛼!
𝜕
𝜕𝑥 − 𝑖𝛼"

𝜕
𝜕𝑦 − 𝑖𝛼#

𝜕
𝜕𝑧 + 𝛽𝑚 Ψ = 𝑖

𝜕
𝜕𝑡 Ψ

+𝑖
𝜕ΨA

𝜕𝑥
𝛼!
A + 𝑖

𝜕ΨA

𝜕𝑦
𝛼"
A + 𝑖

𝜕ΨA

𝜕𝑧
𝛼#
A +𝑚ΨA𝛽A 	= −𝑖

𝜕ΨA

𝜕𝑡

(6)

(7)

ΨA𝛼!
𝜕Ψ
𝜕𝑥 +

𝜕ΨA

𝜕𝑥 𝛼!Ψ =
𝜕 ΨA𝛼!Ψ

𝜕𝑥



The Dirac equation: Probability density and current

• We get the continuity equation:

• Where Ψ. = Ψ/∗, Ψ1∗, Ψ2∗, Ψ3∗	

• The probability density and current are

• where 𝜌 = Ψ.Ψ = Ψ/∗ 1 + Ψ1∗ 1+ Ψ2∗ 1+ Ψ3∗ 1 > 0

• Unlike the KG equation, the Dirac equation has probability density which are always positive!

• The solutions of the Dirac equation are the four-component Dirac spinors

• The great success of the Dirac equation is that these components naturally describe the property of 

intrinsic spin of particles
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∇ ⋅ ΨA𝛼⃗Ψ +
𝜕 ΨAΨ
𝜕𝑡 = 0

𝜌 = ΨAΨ	, 	j	 = ΨA𝛼⃗Ψ

(8)

(9)



Covariant notation: the Dirac 𝜸 matrices
• The Dirac equation can be written more elegantly by introducing the four Dirac gamma matrices

• The probability density and current are

• Using 𝜕0 =
1
1$"

= 1
1*
, 1
1$
, 1
1.
, 1
1/

	we can rewrite it as

• The Dirac gamma matrices are not four-vectors: they are constant matrices that remain invariant 

under Lorentz transformations
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𝛾B = 𝛽, 𝛾> = 𝛽𝛼! , 𝛾1 = 𝛽𝛼", 𝛾? = 𝛽𝛼#

𝑖𝛾<𝜕< −𝑚 Ψ = 0 (10)

𝑖𝛽𝛼!
𝜕
𝜕𝑥 + 𝑖𝛽𝛼"

𝜕
𝜕𝑦 + 𝑖𝛽𝛼#

𝜕
𝜕𝑧 − 𝛽

1𝑚 Ψ = − 𝑖𝛽
𝜕
𝜕𝑡 Ψ

⟹ 𝑖𝛾>
𝜕
𝜕𝑥 + 𝑖𝛾

1 𝜕
𝜕𝑦 + 𝑖𝛾

? 𝜕
𝜕𝑧 −𝑚 Ψ = −𝑖𝛾B

𝜕Ψ
𝜕𝑡



The Dirac equation: solutions
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• Consider a particle at rest, 𝑝 = 0:

• Spinor Ψ splits into two 2-component bi-spinors: Ψ ≡ 2#
2$

• The solutions are written as a function of the bi-spinors 𝑢4 and 𝑢5:

𝑖𝛾B
𝜕
𝜕𝑡 − 𝑚

Ψ>
Ψ1
Ψ?
Ψ@

= 0, where	𝛾B = 𝐼 0
0 −𝐼

𝑖 𝐼 0
0 −𝐼

𝜕
𝜕𝑡

ΨC
ΨD

	= 𝑚
ΨC
ΨD

⟹ 𝑖
𝜕ΨC
𝜕𝑡 = 𝑚ΨC, 𝑖

𝜕ΨD
𝜕𝑡 = −𝑚ΨD

ΨC 𝑡 = 𝑢C𝑒63E8 , 𝐸 > 0: positive	energy	solutions

ΨD 𝑡 = 𝑢D𝑒3E8	, 𝐸 < 0: negative	energy	solutions

(10)



The Dirac equation: solutions

23

• Going back to Eq. 10

• Left-hand side is diagonal ⟹ we can find decoupled solutions for 𝑢4 and 𝑢5, and choose a set of 

eigenvector

𝑚𝐼 0
0 −𝑚𝐼

𝑢C
𝑢D

	= 𝑚
𝑢C
𝑢D

𝑢C =
1
0 	or	 𝑢C =

0
1 ,with	𝐸 = +𝑚

𝑢D =
0
1 	or	 𝑢C =

1
0 ,with	𝐸 = −𝑚



The Dirac equation: solutions
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• Putting everything together, for a particle at rest we find:

• Four solutions: two with positive energy and two with negative energy

ΨB
(>) = 𝑁

1
0
0
0

𝑒63E8 , ΨB
(1) = 𝑁

0
1
0
0

𝑒63E8 , with	positive	energy

ΨB
(?) = 𝑁

0
0
1
0

𝑒H3E8 , ΨB
(@) = 𝑁

0
0
0
1

𝑒H3E8 , with	negative	energy



The Dirac equation: solutions
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• The fact that there are two identical fermions with the same energy implies that there is another 

quantum number that should allow to distinguish them, the helicity

• The corresponding operator is the operator projecting the spin on the direction of motion

h = +1, positive helicity
h = −1, negative helicity



Dirac’s explanation of the negative energy solutions
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• Atoms are observed to be stable

• When an electron occupies a high energy level, it undergoes transition down 

to the state of lowest energy not yet occupied by two electrons

• To save his equation, Dirac makes a hypothesis

• all states of negative energy are occupied by two electrons, preventing another electron to 

reach these states

• All the electron filling the negative energy states form what was called the 

Dirac see



Dirac’s explanation of the negative energy solutions

• What happens if sufficient energy is provided to an electron of the sea?

• It will appear like a hole in the sea

• missing 𝑞 = −𝑒 ⟹ presence of 𝑞 = +𝑒

• missing E < 0 ⟹ presence of 𝐸 > 0 

• A hole in the electron sea at energy level 𝐸 < 0 looks like an ordinary particle 

with charge 𝑞 = +𝑒 and energy −𝐸 > 0!

• Would such positive electrons exist?

• If yes, then they will be identical to the electron except for their charge  
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Discovery of the anti-electron (1932)

• The mystery of negative energy solutions of Dirac’s equation persisted until 1932, when C. 

Anderson discovered a new particle seemingly identical to the electron but with opposite charge
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Discovery of the anti-electron (1932)

• He used a cloud chamber – a tube filled with supersaturated 

vapour

• Charged particles passing through the vapour ionise it, which 

then seed an ion trail that can be photographed

• Uniform magnetic field was applied

• He observed the tracks of a positively charged particle for 

which the energy losses in the Pb −plate were not compatible 

with those of a proton

• On the contrary, the track looked exactly like an electron
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This was the observation of the first antiparticle, the anti-electron, called positron



Discovery of the anti-electron 

• 1933 − Dirac, together with Schrödinger, receive the Nobel prize 

• 1936 − Anderson, at the age of 31, becomes the second youngest Nobel prize winner 
30



The antiparticles

• Feynman-Stücklenberg interpretation for 𝐸 < 0	(1940):

• the story of the sea of electrons was not very satisfactory (infinite negative charge in the Universe)

• new hypothesis supported by the positron observation

• each particle of mass 𝒎 and charge 𝒒 has a corresponding antiparticle of mass 𝒎 and charge −𝒒
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• Indeed, the 𝐸 < 0 solution can be written as 𝐸 −𝑡  instead of −𝐸𝑡

• Corresponds to a particle of positive energy 𝐸 with time inversed 

• Nowadays, we know that for each particle that we know there exists 

an anti-particle

• The discovery of the positron was an important milestone that 

contributed significantly to our understanding of particle physics



Summary of Lecture 6

Main learning outcomes

• Reminder of non-relativistic Quantum Mechanics – wavefunction interpretation, Schrödinger equation

• The Klein-Gordon equation for relativistic particles: derivation, solution and resulting problems

• The Dirac equation and antiparticles: derivation and solution

• How to compute probability density and flux using the continuity equation for Schrödinger, Klein-

Gordon and Dirac equations

• Antiparticle interpretation and the discovery of the positron
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